DSL Forum Technical Report TR-048

(Formerly WT-062v9)

ADSL Interoperability Test Plan

April 2002

Abstract:

Tests and requirements demonstrate interoperability of ADSL modems with various DSLAMs included in the reference model. The key items of loop reach, data handling performance, and electrical compatibility are tested to demonstrate compliance with deployment based requirements. This working text contains tests and requirements for North American and European deployment.

Notice:

The DSL Forum is a non-profit corporation organized to create guidelines for DSL network system development and deployment. This Technical Report has been approved by members of the Forum. This document is not binding on the DSL Forum, any of its members, or any developer or service provider involved in DSL. This document is subject to change, but only with approval of members of the Forum.

©2002 Digital Subscriber Line Forum. All Rights Reserved. DSL Forum technical reports may be copied, downloaded, stored on a server or otherwise re-distributed in their entirety only.

Notwithstanding anything to the contrary, the DSL Forum makes no representation or warranty, expressed or implied, concerning this publication, its contents or the completeness, accuracy, or applicability of any information contained in this publication. No liability of any kind shall be assumed by the DSL Forum as a result of reliance upon any information contained in this publication. The DSL Forum does not assume any responsibility to update or correct any information in this publication.

The receipt or any use of this document or its contents does not in any way create by implication or otherwise any express or implied license or right to or under any patent, copyright, trademark or trade secret rights which are or may be associated with the ideas, techniques, concepts or expressions contained herein. Ron Brost SBC Technology Resources, Inc. 4698 Willow Road Pleasanton, CA USA 94588 Tel. (925) 598-1235 Fax (925) 598-1322 brost@tri.sbc.com

Steve Aspell SBC Technology Resources, Inc. 4698 Willow Road Pleasanton, CA USA 94588 Tel. (925) 598-1262 Fax (925) 598-1322 aspell@tri.sbc.com

Tabl	e of	Contents

1	REVISION HISTORY	5
2	INTRODUCTION	8
2.1	Interoperability	8
2.2	Interpretation of Key Words	8
2.3	Scope	9
3	STANDARDS REFERENCED FOR DYNAMIC INTEROPERABILITY TESTING	9
4	TEST TOOLS REQUIREMENTS	9
5	COMMON TEST INFORMATION	9
5.1	Maximum Rates for DSLAMs	9
5.2	Compatibility Matrix/Definitions	9
5.3	Regional Preferences	9
5.4	Recording Temperature and Humidity	11
5.5	Sync State Definition	11
6	EQUIPMENT FEATURES	11
6.1	Equipment Description	11
6.2	Expected Results	13
7	TEST CONFIGURATIONS	14
8	PHYSICAL LAYER TEST CASES	18
8.1	Loop Tests with Ports Set for Adaptive Rate	18
	.1.1 White Noise Impairment Only	19
	.1.224 HDSL Impairment.1.324 DSL Impairment	21 21
	1.4 5 T1 Adjacent Binder Impairment	21
8.2	Loop Tests with Ports Set For Fixed Rate	22
8	.2.1 North American Fixed Rate Tests	22
8	.2.2 European Fixed Rate Tests	23
8.3		23
	.3.1 CSA #4 Standard Loop .3.2 ANSI 13 Standard Loop	23 24
8.4	Bridged Tap Tests	24 24
8.5	European Full Rate Tests	24
	.5.1 European Impairments with Ports Set for Variable Rate	26
8	.5.2 European Impairments with Ports Set for Fixed Rate	27
8.6	ADSL Functionality Tests	28
8.7	DSL Noise Spikes/Surges Tests	30
	7.1 Test Configuration	30
	.7.2 Test Description.7.3 Results	30 31
	.7.4 Expected Results	31
8.8	Operation in the Presence of Impulse Noise Events (G.996.1, Test Impulse 1)	32
8.9	Stress Tests	32
8	.9.1 Test Description	33
8.1		33
8.1	1 Reporting of ADSL Line Conditions	36
9	HIGHER LAYER TEST CASES	41
9.1	ATM Connectivity Tests	41
9.2	Layer 3 Ethernet or USB Interface RFC 2684 bridged mode	46
	.2.1 Packet Throughput Test.2.2 Packet Latency Tests	46 48
9.3	PPPoE End-to-End Connectivity Test	48 49
9.3	111 OF End-to-End Connectivity rest	49

9.4	PPPoA End-to-End Connectivity Test	51
9.5	RFC 2684 End-to-End Connectivity Test	53
9.6	Usability Test	53
ANNEX	A: ACCURACY OF LOOP SIMULATORS AND NOISE SOURCES (NORMATIVE)	54
A.1	Loop Simulators	54
A.2	Noise Sources	55
A.2.	1 White Noise	55
A.2.	2 24 HDSL, 24 DSL (ISDN), and 5 T1 Adjacent Binder + European Noises	55
A.3	Fine Data Rate Adjustment	55
A.3.	1 Calculation of Data Rate Fine Adjustment	56
A.4	Cabling	57
ANNEX	B: ETSI TO AWG CONVERSION CHARTS (INFORMATIVE)	58

Table of Figures

FIGURE 1:	TEST SETUP FOR LOOP TESTS FOR ADSL EXTERNAL MODEMS	14
FIGURE 2:	TEST SETUP FOR THROUGHPUT TESTS FOR ADSL EXTERNAL MODEMS	
	WITH ETHERNET INTERFACES	14
FIGURE 3:	TEST SET-UP FOR ATM-25 MODEMS	15
FIGURE 4:	TEST SET-UP FOR ETHERNET MODEMS	15
FIGURE 5:	TEST SET-UP FOR USB MODEMS	16
FIGURE 6:	TEST SET-UP FOR PCI (INTERNAL) MODEMS	
FIGURE 7:	40 DB ATTENUATOR FOR TESTS 8.10.1 AND 8.10.2	33
FIGURE 8:	MEASUREMENT METHOD FOR LONGITUDINAL CONVERSION LOSS	
	(SAMPLE SETUP)	35
FIGURE 9:	MEASUREMENT METHOD FOR LONGITUDINAL OUTPUT VOLTAGE (LOV)	36
FIGURE 10:	TEST SETUP FOR PPPOE TESTING WITH ETHERNET MODEMS	50
FIGURE 11:	TEST SETUP FOR PPPOE TESTING WITH USB MODEMS	50
FIGURE 12:	TEST SETUP FOR PPPOE TESTING WITH PCI MODEMS	51
	TEST SETUP FOR PPPOA TESTING WITH ETHERNET MODEMS	
FIGURE 14:	TEST SETUP FOR PPPOA TESTING WITH USB MODEMS	
FIGURE 15:	TEST SETUP FOR PPPOA TESTING WITH PCI MODEMS	52

1 Revision History

Date (M/D/Y)	Version	Major Changes	Editor(s)
3/15/01	1.0	Initial creation per agreement in	Steve Aspell, SBC Technology
		Vancouver, B.C., based on	Resources, Inc.
		contribution 2001.103	Ron Brost, SBC Technology
			Resources, Inc.
			Tom Starr, SBC Technology
			Resources, Inc.
			James Viator, Bell South
			Telecommunications
			Michael Brusca, Verizon
			Communications
			Ashley Pickering, BTexact
			Pete Youngberg, Sprint
4/13/01	2.0	Eliminated redundant DSLAM	Ron Brost
		configuration information from	
		Section 8, other editorial	
		changes.	
5/4/01	3.0	Added one entry each to Tables	Steve Aspell and Ron Brost
		7.2.3 and 7.2.4; moved Sections	
		8.4 through 8.11 to new Section	
		10; eliminated redundant loop	
		simulator setup information from	
		former Section 8.4.1 Step 3 (now	
		Section 10.1.1 Step 3); other editorial changes.	
6/7/01	4.0	Added reference to Section 6 of	Ron Brost
0/ //01	4.0	G.992.1 to Section 5.1; changed	Koli Blost
		title of Section 10.2 to "Operation	
		in the Presence of Impulse Noise	
		Events (G.996.1, Test Impulse 1);	
		added table of cluster descriptions	
		and regional preferences.	
7/16/01	5.0	Deleted no noise tests from	Ron Brost
.,,		Section 7; added requirement to	
		Section 7 to have multiple trials	
		for loop tests; changed title of	
		Section 7.2; major reorganization	
		of Section 8, including the	
		addition of Figures 3, 4, 5, and 6;	
		added Test 10.2.2; deleted Test	
		10.8.2; added Method of	
		Procedure language to Test	
		10.6.2; other misc. changes.	

Table 1: Revision History

7/27/01	6.0	Sectionalized existing Section 2,	Steve Aspell and Ron Brost
		and added Scope sub-section;	
		updated performance requirement	
		numbers in Section 7.2.1;	
		corrected downstream	
		performance numbers in Section	
		7.4.2 that had been previously	
		transposed; added paragraph to	
		the beginning of Section 10.5	
		before tests; deleted Test 10.5.3	
		that had been in Ver. 5; changed	
		tests 10.5.1 and 10.5.2 from Ver.	
		5 to tests 10.5.5 and 10.5.6;	
		added new tests 10.5.1-10.5.4;	
		added Figures 8 and 9; added test	
		report template in Annex B	
9/12/01	7.0	Added line numbering; edited	Steve Aspell and Ron Brost
7/12/01	7.0	scope statement; removed	Steve Aspen and Ron Drost
		requirement for testing noise	
		margin in Section 7; changed	
		requirement for performing	
		Section 7 loop test multiple times	
		(repeat failed tests instead of	
		performing each test multiple	
		times); divided Section 7.3 into	
		North American and European	
		sections; added tests in Section	
		7.6; edited DSLAM provisioning	
		values in Section 8 so they apply	
		to all of Section 8, instead of just	
		Section 8.1; edited tests in	
		Section 8.1; specified frame size	
		of 1280 bytes in Test 8.2.5; edited	
		QoS tests in Section 9; deleted	
		existing Tests 9.1.6 and 9.1.7,	
		and added new Tests 9.1.6	
		through 9.1.9; added details to	
		test 9.2.1; edited Section 10.1;	
		edited Test 10.2.2; added details	
		to Test 10.6.2; deleted Section	
		10.8 (modem sync time); added	
		table of attenuation values to	
		Annex A; deleted Annex B (test	
		report template); other misc.	
		changes	
9/19/01	8.0	Rearranged document sections so	Steve Aspell and Ron Brost
2/12/01	0.0	that document is more clearly	Steve rispen und Kon Brost
		divided between physical layer	
		and higher layer major sections	
-	l	and migner rayer major sections	<u> </u>

10/17/01	055		
12/17/01,	8.5.5	Numerous changes based on	Steve Aspell and Ron Brost
2/1/02,		straw ballot comments: added	
2/11/02,		descriptions column to feature	
2/13/02,		tables; edited figures to include	
2/14/04		high impedance baluns; changed	
		"actual" to "reported" for tests in	
		which noise margin is	
		informational only; edited	
		bridged tap test figure to indicate	
		e 1 e	
		loop simulators; changed test	
		requirements in bridged tap tests	
		so that zero length tap	
		requirements match requirements	
		for regular loop tests; added noise	
		margin columns in bridged tap	
		test tables; edited tables in	
		European Fixed Rte tests; edited	
		bit swap test; edited DSL Noise	
		Spike/Surge test; edited Impulse	
		Noise Test; added ETSI loop	
		reference in addition to CSA loop	
		-	
		reference in numerous locations;	
		added BERT testing options to	
		several tests; edited margin	
		verification test; edited	
		throughput tests to indicate	
		testing in one direction at a time;	
		added figures 12-17; edited	
		PPPoE and PPPoA tests; changed	
		Annex A in its entirety; added	
		Annex B; numerous editorial	
		edits	
2/15/02	8.5.6	Edited Test 8.6.1; edited test in	Ron Brost
2/13/02	0.5.0		Roll Drost
		Section 8.9.1; changed Tests	
		8.10.1 and 8.10.2; added figure	
		for 40 dB attenuator; edited Test	
		8.11.1; other minor edits	
2/26-28/02	9.0	Created new version in	Ron Brost
		preparation for letter ballot	
		submission. Edited language	
		regarding test cells in Test 9.1.1;	
		edited noise calibration	
		procedures in Annex A; changed	
		the diagram in Section 8.4, other	
		minor edits there; added Fine	
		Adjusted columns in Sections	
		8.1, 8.3, 8.4, and 8.5.2; edited	
		figures 10, 11, and 12; other	
		minor edits.	

1 2 Introduction

This document describes interoperability test cases required for ADSL reference systems consisting of DSLAMs
 and CPE modems.

4 2.1 Interoperability

5 A CPE modem and a DSLAM are dynamically interoperable if they implement a common and compatible set of

6 features, functions and options and can demonstrate satisfactory mutual communication in a real network

7 architecture environment as performance test conditions are varied and exercised. The term "compatible" is used

to mean that there are no conflicting requirements that will prevent the ADSL system from achievinginteroperability.

9 10

11 Systems are tested for Dynamic Interoperability on both standard loops and on a set of additional loops. ADSL

12 Termination equipment (ATU-R and/or ATU-C) will be required to be tested according to the tests stated in this

13 document. An interoperability statement with respect to this technical report is only applicable for ATU-R/ATU-C

14 combinations that have been tested against each other using the tests specified in this document.

- 15
- 16 Throughout this document, the term "DSLAM" is understood to refer to the functionality of the ATU-C. The

terms "CPE", "CPE modem" and "modem" are understood to refer to the functionality of the ATU-R, unless stated

otherwise. ATU-C functionality may be provided by DSLAM units or digital loop carrier based (DLC) remote

19 terminal units.

20 2.2 Interpretation of Key Words

This document uses several words to signify the specification requirements. This section defines these words as they should be interpreted. The key words "must", "must not", "required", "shall", "shall not", "should", "should not", "recommended", "may", and "optional" in this document are to be interpreted as described below.

24

27

- <u>*Must*</u>: This word, or the terms "required" or "shall", mean that the definition is an absolute requirement of the specification.
- <u>Must Not</u>: This phrase, or the phrase "shall not", mean that the definition is an absolute prohibition of the specification.
- Should: This word, or the adjective "recommended", mean that there may exist valid reasons in particular
 circumstances to ignore a particular item, but the full implications must be understood and carefully weighed
 before choosing a different course.
- Should Not: This phrase, or the phrase "not recommended" mean that there may exist valid reasons in
 particular circumstances when the particular behavior is acceptable or even useful, but the full implications
 should be understood and the case carefully weighed before implementing any behavior described with this
 label.
- 39

34

<u>May</u>: This word, or the adjective "optional", mean that an item is truly optional. One vendor may choose to
 include the item because a particular marketplace requires it or because the vendor feels that it enhances the
 product while another vendor may omit the same item. An implementation that does not include a particular
 option must be prepared to interoperate with another implementation which does include the option, though
 perhaps with reduced functionality. In the same vein, an implementation that does include a particular option
 must be prepared to interoperate with another implementation which does not include the option (except, of
 course, for the feature the option provides).

47 **2.3 Scope**

- 48 This test plan facilitates ADSL over POTS CPE / DSLAM interoperability testing. This test plan embodies
- 49 operators' definitions of ADSL interoperability (between one DSLAM and one CPE at a time). The test plan
- 50 focuses on physical layer testing, and also validation and verification of selected higher layer functionality. The
- test plan defines dynamic interoperability (performance) as expected by leading carriers, specifying simulated
- 52 network conditions under which interoperability is required. The performance points in this test plan are based on 53 ATU-C equipment, capable of providing 20.4 dBm transmit power over the frequency band from 25.875 kHz to
- ATU-C equipment, capable of providing 20.4 dBm transmit power over the frequency band from 25.875 kHz to 1104 kHz. ATU-C equipment unable to provide this transmit power is considered to be out of the scope of this
- interoperability test. The performance points may differ from the performance requirements of ANSI T1.413-1998
- and ITU-T G.992.1. It does not fully replace all operators' pre-deployment testing.
- 57
- 58 This test plan defines tests for various physical layer functionalities and some higher layer functionalities. A 59 pass/fail indication result is provided for each functionality tested.

3 Standards Referenced for Dynamic Interoperability Testing

ADSL reference systems will be tested to be interoperable according to the ANSI T1.413-1998 (Issue II) or ITU-T

- 62 Annex A of G.992.1 (G.dmt) standards.
- 63

64 Some of the performance requirements specified herein exceed those of the previously mentioned standards. These

- higher requirements were provided by the service providers furnishing primary input to this document, and were
- agreed upon by those service providers.

67 **4 Test Tools Requirements**

- 68 Loop simulator (see Annex A)
- 69 1 traffic simulator/analyzer with ATM and 10BASE-T capabilities
- 70 ATM switch/router
- 71 PC with USB/Ethernet interface
- Noise sources for both ends of the line (loop simulator integral noise sources or arbitrary waveform generators)

All these tools are part of configurations identified in figures 3, 4, 5 and 6. The ATM switch/router and PC used

for throughput testing should have adequate performance such that they do not affect the measured throughput over

- the ADSL link. The ATM Switch or Simulator may be removed if traffic simulator/analyzer in use is capable of
- terminating the ATM traffic directly from the DSLAM.

78 **5 Common Test Information**

79 5.1 Maximum Rates for DSLAMs

80 Throughout this document, the variables MAX UP and MAX DN appear. When encountered, substitute for them 81 the maximum possible net data rate (Section 6 of G.992.1) for the DSLAM being used in the test. The terms

82 "variable rate" and "adaptive rate" are also used and should be taken as maximum possible net data rate.

83 5.2 Compatibility Matrix/Definitions

A modem must achieve at least the minimum required performance in each test to claim interoperability with the

DSLAMs it is tested against. When a modem is tested against a set of DSLAMs, it must achieve the minimum required performance in each test against each DSLAM.

87 5.3 Regional Preferences

88 This document serves as an international framework for ADSL interoperability testing. Although there is a

the related cluster.

89 common understanding on interoperability needs, regional preferences occur due to different evolutions in

90 telecommunication networks all over the world. The following matrix provides an overview of the requirements in

91 specific regions of the world. This selection matrix should not prevent world-wide interoperability, but it should

92 help to reduce the testing effort when a "device under test" is intended to be used only in one or in a few specific

93 countries. Several clusters are introduced to address the specific regions:94

Cluster A	Cluster A is intended to represent typical networks as they are present in the North American	
	hemisphere.	
Cluster B	Cluster B is intended to represent typical networks as they are present in the European	
	hemisphere.	
Note: None	of the clusters above is restricted to networks of the given region. For networks outside t	

specific regions, a cluster can also apply. Furthermore, even networks in a given region can differ from

96 97 98

Requirement		Applies for	Applies for
		Cluster A networks	Cluster B networks
7	Test Configurations	X	X
8	Physical Layer Test Cases	L	1
8.1	Loop Tests with Ports Set for Adaptive	e Rate	
8.1.1	White Noise Impairment Only	Х	X
8.1.2	24 HDSL Impairment	Х	X
8.1.3	24 DSL (ISDN) Impairment	Х	X
8.1.4	5T1 Adjacent Binder Impairment	Х	X
8.2	Loop Tests with Ports Set For Fixed R	late	•
8.2.1	North American Fixed Rate Tests	Х	
8.2.2	European Fixed Rate Tests		Х
8.3	Full Rate Standard Loop Tests		
8.3.1	CSA #4 Standard Loop	Х	Х
8.3.2	ANSI 13 Standard Loop	Х	
8.4	Bridged Tap Tests	Х	X
8.5	European Impairments		
8.5.1	European Impairments with Ports Set for Variable Rate		X
8.5.2	European Impairments with Ports Set for Fixed Rate		X
8.6	ADSL Functionality Tests	Х	X
8.7	DSL Noise Spikes/Surges Tests	Х	

Requirement		Applies for Cluster A networks	Applies for Cluster B networks
8.8	Operation in the Presence of Impulse Noise Events (G.996.1, Test Impulse 1)	Х	
8.8.1	North American Impulse Noise Test	Х	
8.9	Stress Tests	Х	Х
8.10	Electrical Compatibility Tests	Х	X
8.11	Reporting of ADSL Line Conditions	Х	X
9	Higher Layer Test Cases		
9.1	ATM Connectivity Tests	Х	X
9.2	9.2 Layer 3 Ethernet or USB Interface RFC 2684 bridged mo		
9.2.1	Packet Throughput Test	Х	Х
9.2.2	Packet Latency Tests	Х	Х
9.3	PPPoE End-to-End Connectivity Test	Х	Х
9.4	PPPoA End-to-End Connectivity Test	Х	Х
9.5	RFC 2364 End-to-End Connectivity Test	Х	Х
9.6	Usability Test	Х	X

99 5.4 Recording Temperature and Humidity

100 The ranges of temperature and humidity of the test facility over the entire time of all the tests herein shall be 101 recorded in a manner similar to that shown here. The acceptable range of temperatures shall be between

102 15 °C/59 °F and 35 °C/95 °F. The humidity shall be between 5% and 85%.

Parameter	High	Low
Temperature		
Humidity		

103 **5.5 Sync State Definition**

104 The modem sync state shall be defined as achieving showtime and capable of transferring data.

105 6 Equipment Features

106 **6.1 Equipment Description**

Record the specifications claimed by the manufacturer of the reference system. All data rates requested are to be
 'net data rate' as defined in or ITU-T Annex A of G.992.1 (G.dmt). The data recorded will be used in the test

109 report to specifically define the combination of devices tested (ATU-C/ATU-R).

110 Table 2: DSLAM Features Table (Informative)

Test Item	Results
Make	
Model Number	
Network Interface	
DSLAM Firmware Version	
Chipset Hardware Version	
Chipset Firmware Version	
Line Card Type	
Line Card Version	
Line Card Firmware Version	
Supported max net data rate - downstream	
Supported max net data rate - upstream	
Maximum Number of VCCs	
F5 OAM Support	
VPI/VCI Ranges	

111 Table 3: CPE Features Tables (Informative)

112 CPE General Information

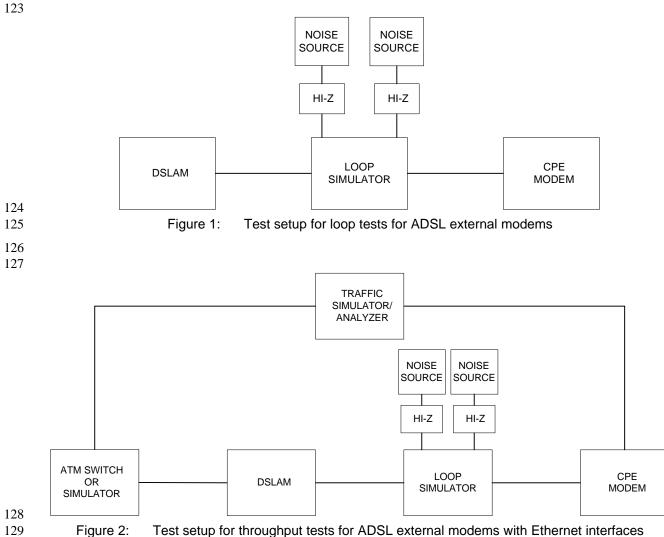
Test Item	Results	Description
CPE Make/Model/Rev.		Product name / model / revision
Serial Number		CPE Serial number
Software Version		CPE SW version
Chip Set Make/Model/Rev.		Chipset name / model / revision
Firmware Revision		Firmware revision
Modem Form		Ethernet, USB, PCI, ATMF25
PCI/USB Driver Version		PCI/USB driver version

113 ADSL Characteristics

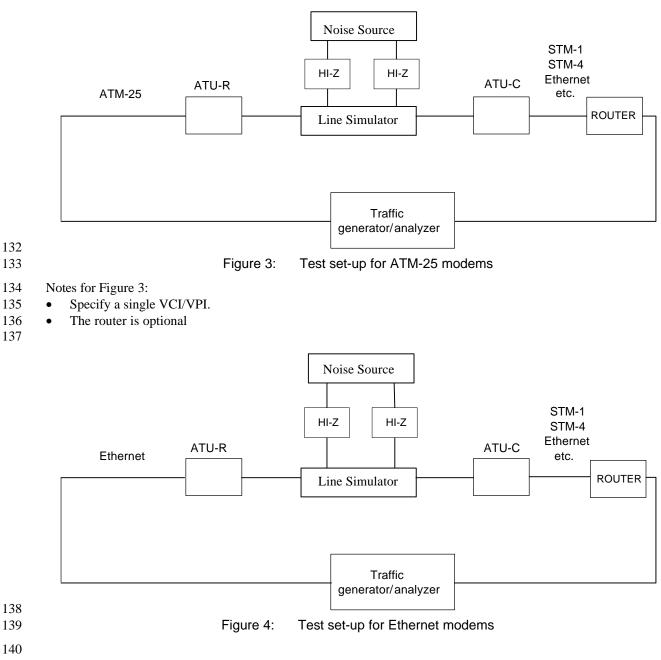
Supported max net data rate - downstream	DS maximum bitrate in kbps
Supported max net data rate - upstream	US maximum bitrate in kbps
Rate Adaptation	Adaptive and/or fixed rate
Echo Cancellation	Yes/No
Power Boost/Cut	Yes/No
T1.413-1998 Mode	Yes/No
G.992.1 Annex A Mode	Yes/No
Fast Mode	Yes/No
Interleaved Mode	Yes/No
Dying Gasp	Yes/No
Test mode online quiet	Yes/No
Test mode continuously sending	Yes/No

Maximum No. of VC's	Maximum number of VC's
VPI/VCI Ranges	VPI/VCI ranges
SVC	Yes/No
SAR	PC or Modem
Multicast Support	Yes/No
F4/F5 OAM Loopback	Yes/No (OAM segment or end-to-end)
UBR Supported	Yes/No
CBR Supported	Yes/No
VBR.rt Supported	Yes/No
VBR.nrt Supported	Yes/No
ILMI	Yes/No
Protocols	
RFC 1483 or 2684 IP Bridging	RFC 1483 or RFC 2684 or no
RFC 1483 or 2684 IP Routing	RFC 1483 or RFC 2684 or no
Bridge Filter	Yes/No
LLC-SNAP	Yes/No
VC-MUX	Yes/No
DHCP Client	Yes/No
DHCP Server	Yes/No
NAT	Yes/No
PAT	Yes/No
RFC 2364 PPPoA	Yes/No (precise Embedded or Host client)
RFC 2516 PPPoE	Yes/No (precise Embedded or Host client)
PAP	Yes/No
СНАР	Yes/No
Classical IP RFC 1577	Yes/No
Max number of active connect.	For router only
Other supported protocols	

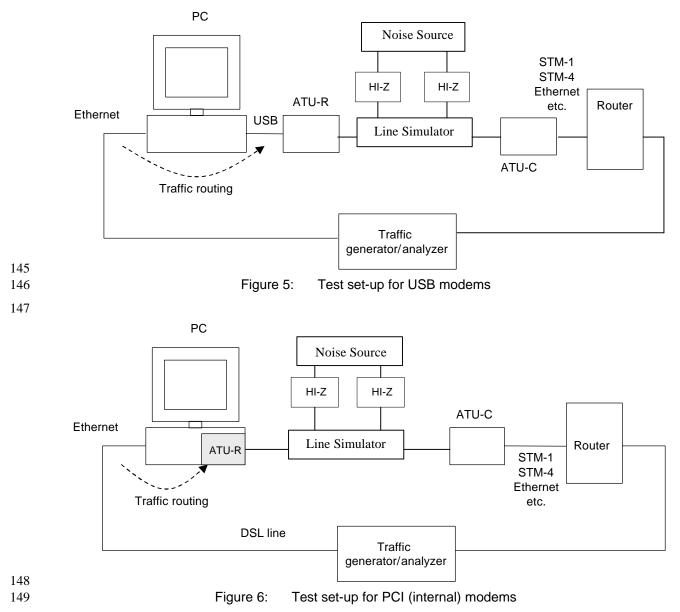
116 6.2 Expected Results


117 The *Results* columns of tables 2 and 3 shall be completed to indicate whether each feature is included with the

118 DSLAM or CPE modem. The information to complete the tables shall be available with the equipment.


119 7 Test Configurations

120 Note for Figures 1 through 6: high-impedance couplings may be integrated in noise sources, and high impedance is


- 121 defined as in G.996.1 Figure 3.
- 122

130 Note for Figure 2: The ATM Switch or Simulator may be removed if traffic simulator/analyzer in use is capable of 131 terminating the ATM traffic directly from the DSLAM.

- 141 Note for Figure 4:
- The modem must be set to a bridged configuration.
- 143 The router is optional
- 144

- 151 Notes for Figure 5 and Figure 6:
- 152 The PC must have a separate Ethernet interface or Ethernet card installed.
- The Ethernet card and the corresponding port on the traffic generator/analyzer should be configured with IP
 addresses on the same network.
- The PC should be set-up to route traffic between the Ethernet interface and the USB interface (see below).
 Note that the PPP session through the modem needs to be initiated before this can be done, if PPP is to be used.
- With suitable choice of PC it is assumed that its effects on performance are negligible.
- The traffic generator/analyzer is used to measure end to end throughput, latency and packet loss in exactly the same way as for other modem types (*e.g.*, Ethernet).
- The PC setup examples below only apply to Windows PCs: (Note that the choice of PC impacts performance and that this impact should be restricted.)

163 On the PC, enable IP routing by adding *EnableRouting "1"* to -164 HKEY_local_machine\system\currentcontrolset\services\VxD\MSTCP of the Windows registry. Add a route on the PC to the traffic generator/analyzer port which is connected to the router by using 165 -166 route add <network address> mask <network mask> <ip address> from DOS. Add a static route on the router to the Ethernet port of the traffic generator/analyzer connected to the 167 -168 PC. 169

170 8 Physical Layer Test Cases

Loop simulators shall simulate cable characteristics specified in ITU-T Rec. G.996.1 for 70 degrees Fahrenheit. 171 172 The loop simulators shall be calibrated relative to the nominal attenuation as defined in Annex A.1. Noise shall be injected through a high impedance network as specified in G.996.1, with simultaneous noise injection at both ends 173 174 of the loop. The noise injection shall be calibrated as defined in Annex A.2. (Note: Although G.996.1 crosstalk 175 models are intended for injection at a single end of the loop, noise in this document is injected on both ends 176 simultaneously in order to reduce testing time. It is understood that noise levels on short loops can be up to 3 dB 177 higher.) 178 179 DSLAM Port Settings Common to All Loop Tests:

- Variable rate (except sections 8.2 and 8.5.2)
- Autodetect between T1.413-1998 and G.dmt per G.992.1 Annex A
- 182 Trellis code is allowed
- The target noise margin shall be set to 6 dB upstream and downstream
- 184 Framing mode 3 is allowed
- Interleaved mode shall be tested with maximum interleave delay = 16 ms
- 186 The minimum noise margin shall be set to 0 dB
- Rate adaptive mode shall be used unless a fixed rate is indicated
- No limitation of maximum noise margin (set at least to 30 dB)
- 190 The CO splitter used shall be the splitter integral to the DSLAM, if that option exists. Otherwise, an external CO 191 splitter as specified in Annex E of G.992.1 shall be used.
- 192

189

193 USB modems and NIC modems will be connected via an Ethernet card in a computer that has the minimum

194 configuration per the modem's manufacturer.195

196 ATM switch included for DSLAM termination and IP return traffic.

197 8.1 Loop Tests with Ports Set for Adaptive Rate

To obtain a result for each individual test, each test shall be performed once. Any test point that fails to meet the requirement by 96 kbps or less shall be re-tested 3 times. If a re-test is performed, then the maximum downstream value achieved during testing, along with the associated upstream rate, shall be recorded. If a circuit fails to sync within 60 seconds, a result of zero will be recorded into the result for that test point.

202

Note: passing criteria is sync rates, noise margins are for informational purposes. Noise margins shall be read one
 minute (or longer) after modem training.

205

206 Note: the fine data rate adjustment is added to the measured data rate and the total is compared with the expected

- 207 data rate to determine whether the modem passes or fails the test.
- 208

209 8.1.1 White Noise Impairment Only

- 210 Apply white noise disturber at both ends of the total loop at -140 dBm/Hz.
- 211 80 individual tests 72 tests must be passed
- 212

					Fast I	Mode				
26			Upstream	l			D	ownstrea	m	
kft,		Sync Ra	te (kbps)	-			Sync Ra	te (kbps)	-	
Loop Length (kft, 26 AWG)	Expected	Measured	Fine Adjustment	Pass/Fail	Noise Margin, Reported (dB)	Expected	Measured	Fine Adjustment	Pass/Fail	Noise Margin, Reported (dB)
0	800					8000				
1	800					8000				
2	800					8000				
3	800					8000				
4	800					8000				
5	800					8000				
6	800					8000				
7	800					8000				
8	800					7360				
9	800					6432				
10	800					5408				
11	768					4224				
12	704					3200				
13	608					2336				
14	512					1696				
15	416					1184				
16	320					800				
17	256					512				
17.5	224					384				
18	160					288				

TR-048

					Interl	eaved				
, 26			Upstream	1	-	Downstream				-
kft		Sync Ra	te (kbps)				Sync Ra	te (kbps)		Noise Margin, Reported (dB)
Loop Length (kft, 26 AWG)	Expected	Measured	Fine Adjustment	Pass/Fail	Noise Margin, Reported (dB)	Expected Actual	Measured	Fine Adjustment	Pass/Fail	
0	800					7616				
1	800					7616				
2	800					7616				
3	800					7616				
4	800					7616				
5	800					7616				
6	800					7616				
7	800					7616				
8	800					7360				
9	800					6528				
10	800					5408				
11	800					4256				
12	800					3488				
13	736					2592				
14	640					1824				
15	576					1408				
16	480					960				
17	384					608				
17.5	384					480				
18	352					416				

215 8.1.2 24 HDSL Impairment

- 216 Set noise generators for 24 HDSL impairment and white noise at -140 dBm/Hz, CO and CPE ends.
- 217 *12 individual tests 11 must be passed*
- 218

					Fast 1	t Mode				
26			Upstream	l		Downstream				
kfi,	Sync Rate (kbps)					Sync Ra	te (kbps)	-		
 Loop Length (kft, 26 AWG) 	Expected	Measured	Fine Adjustment	Pass/Fail	Noise Margin, Reported (dB)	Expected	Measured	Fine Adjustment	Pass/Fail	Noise Margin, Reported (dB)
0	800					8000				
3	800					8000				
6	672					8000				
9	416					5472				
12	160					1952				
13	96					1184				

219 8.1.3 24 DSL Impairment

- 220 Set noise generators for 24 DSL (ISDN) Impairment [DSL Impairment in G.996.1] and white noise at
- 221 –140 dBm/Hz, CO and CPE ends.
- 222 14 individual tests 13 must be passed
- 223

					Fast l	Fast Mode											
26			Upstream	l			D	ownstrea	m								
kft,		Sync Ra	te (kbps)				Sync Ra	te (kbps)									
 Loop Length (kft, 26 AWG) 	Expected	Measured	Fine Adjustment	Pass/Fail	Noise Margin, Reported (dB)	Expected	Measured	Fine Adjustment	Pass/Fail	Noise Margin, Reported (dB)							
0	800					8000											
3	800					8000											
6	800					8000											
9	672					6272											
12	416					2880											
15	160					928											
16	64					576											

224 8.1.4 5 T1 Adjacent Binder Impairment

- 225 Set noise generators for 5 T1 adjacent binder impairment and white noise at -140 dBm/Hz, CO and CPE ends.
- 226 12 individual tests 11 must be passed

227

		Fast Mode								
26			Upstream			Downstream				
kfi,	Sync Rate (kbps)						Sync Ra	te (kbps)		
Dep Length (kft, 26 AWG)	Expected	Measured	Fine Adjustment	Pass/Fail	Noise Margin, Reported (dB)	Expected	Measured	Fine Adjustment	Pass/Fail	Noise Margin, Reported (dB)
0	800					8000				
3	800					8000				
6	800					5216				
9	800					1824				
12	736					608				
15	480				1	64				

228 8.2 Loop Tests with Ports Set For Fixed Rate

- 229 To obtain a result for each individual loop length, each test shall be run once. If a circuit syncs within 60 seconds,
- that is considered passing for that loop length. Noise margins shall be read one minute (or longer) after modem
- training.
- Apply white noise disturber at both ends of the total loop at -140 dBm/Hz.

8.2.1 North American Fixed Rate Tests

- 234 256 kbps downstream, 128 kbps upstream
- 235 16 individual tests 16 shall be passed
- 236

Loop Length		Fast Mode		Ir	nterleaved Mo	ode
(kft, 26 AWG)	Modem Trained (Y/N)?	Upstream Noise Margin, Reported (dB)	Downstream Noise Margin, Reported (dB)	Modem Trained (Y/N)?	Upstream Noise Margin, Reported (dB)	Downstream Noise Margin, Reported (dB)
0						
3						
6						
9						
12						
15						
17						
17.5						

8.2.2 European Fixed Rate Tests 238

239 576 kbps downstream, 128 kbps upstream 240

12 individual	12 individual tests – 12 shall be passed										
Loop Length		Fast Mode		Interleaved Mode							
(km, ETSI-1)	Modem Trained (Y/N)?	Upstream Noise Margin, Reported (dB)	Downstream Noise Margin, Reported (dB)	Modem Trained (Y/N)?	Upstream Noise Margin, Reported (dB)	Downstream Noise Margin, Reported (dB)					
0											
0.9											
1.8											
2.7											
3.6											
4.5											

241

242 1536 kbps downstream, 384 kbps upstream

12 individual tests – 12 shall be passed 243

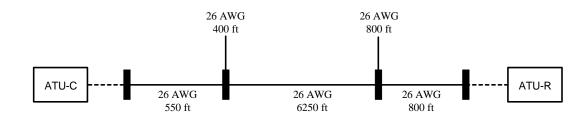
12 inalviauai lesis – 12 shall be passed									
Loop Length		Fast Mode		Int	erleaved Mo	d Mode			
(km, ETSI-1)	Modem Trained (Y/N)?	Upstream Noise Margin, Reported (dB)	Downstream Noise Margin, Reported (dB)	Modem Trained (Y/N)?	Upstream Noise Margin, Reported (dB)	Downstream Noise Margin, Reported (dB)			
0									
0.9									
1.8									
2.7									
3.6									
4.2									

8.3 Full Rate Standard Loop Tests 244

245 To obtain a result for each individual test, each test shall be performed once. Any test point that fails to meet the 246 requirement by 96 kbps or less shall be re-tested 3 times. The maximum value of the re-tests shall be recorded. If

247 a circuit fails to sync within 60 seconds, a result of zero will be recorded into the result for that trial. Noise 248 margins shall be read one minute (or longer) after modem training.

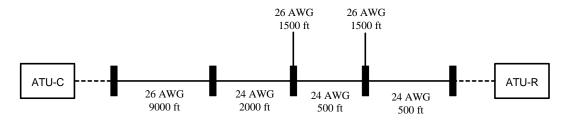
249 Note: the fine data rate adjustment is added to the measured data rate and the total is compared with the expected 250 data rate to determine whether the modem passes or fails the test.


251

252 Always apply white noise disturber at both ends of the total loop at -140 dBm/Hz.

8.3.1 CSA #4 Standard Loop 253

254 8 individual tests – 7 must be passed



Disturber		Fast Mode									
Туре			Upstream]	Downstrear	n		
	Sy	nc Rate (kb	ps)	gin, IB)	Pass /Fail	Sync Rate (kbps)			gin, IB)	Pass /Fail	
	Expected	Measured	Fine Adjustment	Noise Margin, Reported (dB)		Expecte d	Actual		Noise Margin, Reported (dB)		
White Noise	800					7136					
24 HDSL	480					6080					
5 T1	800					1568					
24 DSL (ISDN)	736					6624					

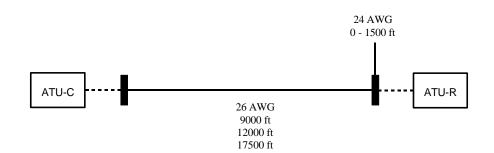
259 8.3.2 ANSI 13 Standard Loop

260 8 individual tests- 7 must be passed

261

262 263

Disturber Type		Fast Mode										
			Upstream					Downstream	n			
	Sy	nc Rate (kt	ops)		Pass /Fail	Sy	nc Rate (kb		Pass /Fail			
	Expected	Measured	Fine Adjustment	Noise Margin, Reported (dB)	, i dif	Expected	Measured	Fine Adjustment	Noise Margin, Reported (dB)			
White Noise	608					2272						
24 HDSL	64					1376						
5 T1	576					288						
24 DSL (ISDN)	288					2240						


264

265 8.4 Bridged Tap Tests

To obtain a result for each individual test, each test shall be performed once. Any test point that fails to meet the requirement by 96 kbps or less shall be re-tested 3 times. The maximum value of the re-tests shall be recorded. If a circuit fails to sync within 60 seconds, a result of zero will be recorded into the result for that trial. Noise margins shall be read one minute (or longer) after modem training.

270

- Apply white noise disturber at both ends of the total loop at -140 dBm/Hz.
- 273 48 individual tests 43 must be passed

The simulated straight loop shall be 26 AWG. The simulated bridged tap shall be 24 AWG. The loop simulator(s) shall be calibrated relative to this nominal attenuation as defined in Annex A.1. The noise injection shall be

279 calibrated as defined in Annex A.2.

280

Note: the fine data rate adjustment is added to the measured data rate and the total is compared with the expected data rate to determine whether the modem passes or fails the test.

- 283
- White noise disturber at both ends of the total loop, at -140 dBm/Hz
- Fast mode

286

				9,0)00 Foo	t Loop				
Tap Length		Upst	ream		Pass/		Down	stream		Pass/
(feet)	Syne	c Rates (l	kbps)		Fail	Sync	c Rates (k	(bps)		Fail
	Expected	Measured	Fine Adjustment	Noise Margin, Reported (dB)		Expected	Measured	Fine Adjustment	Noise Margin, Reported (dB)	
0	800					6432				
50	800					6272				
150	800					5152				
250	800					5216				
350	800					5376				
500	800					5600				
750	800					5760				
1000	800					5664				
1250	800					5664				
1500	800					5632				

288

				12,	000 Foo	ot Loop				
Tap Length		Upst	ream		Pass/		Downs	Pass/		
(feet)	Sync	c Rates (k	(bps)		Fail	Sync	c Rates (k	(bps)		Fail
	Expected	Measured	Fine Adjustment	Noise Margin, Reported (dB)		Expected	Measured	Fine Adjustment	Noise Margin, Reported (dB)	
0	704					3200				
50	704					3168				
150	704					2752				
250	704					2080				
350	704					2112				
500	704					2336				
750	704					2464				
1000	672					2528				
1250	640					2528				
1500	640					2464				

				17,	500 Foc	ot Loop				
Tap Length		Upstream				Pass/ Downstream				
(feet)	Sync	c Rates (k	(bps)		Fail	Sync	c Rates (k		Fail	
	Expected	Measured	Fine Adjustment	Noise Margin, Reported (dB)		Expected	Measured	Fine Adjustment	Noise Margin, Reported (dB)	
0	224					384				
50	224					352				
150	224					256				
200	224					224				

1 **F F**00 **T**

. .

291 8.5 European Full Rate Tests

292 8.5.1 European Impairments with Ports Set for Variable Rate

293

To obtain a result for each individual test, each test shall be performed once. Any test point that fails to meet the requirement by 96 kbps or less shall be re-tested 3 times. The maximum value of the re-tests shall be recorded. If a circuit fails to sync within 60 seconds, a result of zero will be recorded into the result for that trial.

Note: passing criteria is sync rates, noise margins are for informational purposes. Noise margins shall be read one
 minute (or longer) after modem training.

299

Note: the fine data rate adjustment is added to the measured data rate and the total is compared with the expecteddata rate to determine whether the modem passes or fails the test.

- 302 6 dB target margin
- 303 Fast and interleaved modes of operation
- 304 Variable rate
- 305
- 306 *14 individual tests 14 must be passed*
- 307

Loop (see G.996.1)	Loop Insertion Loss @ 300kHz	Nominal length 'X' (Km)	Down Net Data Rate (kbps)	Actual Down Net Data Rate (kbps)	Fine Adjusted Down Net Data Rate (kbps)	Reported Down Noise Margin (dB)	Pass/ Fail	Up Net Data Rate (kbps)	Actual Up Net Data Rate (kbps)	Fine Adjusted Up Net Data Rate (kbps)	Reported Up Noise Margin (dB)	Pass/ Fail	Noise @ ATU-C	Noise @ ATU-R
ETSI-0	0 dB	0	6144					640					AWGN @ - 140 dBm/Hz	AWGN @ - 140 dBm/Hz
ETSI-1	40 dB	2.80	4896	-				320					Euro-K	ETSI-A
ETSI-1	50 dB	3.50	2144					128					Euro-K	ETSI-A
ETSI-1	20 dB	1.40	6144					640					ETSI-B	ETSI-B
ETSI-1	30 dB	2.15	2048					512					ETSI-B	ETSI-B
ETSI-1	60 dB	4.20	576					128					ETSI-A	ETSI-A
ETSI-1	60 dB	4.20	1536					512					AWGN @ -	AWGN @ -
													140 dBm/Hz	140 dBm/Hz

308 8.5.2 European Impairments with Ports Set for Fixed Rate

- 309 6 dB target margin
- 310 Fast and interleaved modes of operation
- 311 Fixed rate
- 312
- 313 Method of procedure
- 1. Provision the DSLAM with ports set for fixed rate at the downstream and upstream bit rates as specified.
- Set up ETSI-1 loop simulator at the loop length as indicated in the table and inject the noise simultaneously at
 both ends of the loop.
- 317 3. Let the CPE train.
- 318 4. Check upstream and downstream noise margins and document them.
- 319

320 The passing criteria is that for the defined loop length and the required data rate specified in the tables, there is a minimum of 6 dP noise mergin both for the downstream and unstream channel.

- 321 minimum of 6 dB noise margin both for the downstream and upstream channel.
- 322

Note that the loop definitions (insertion loss @ 300 kHz and loop length) are equivalent and either may be used.
 10 individual tests – 10 must be passed

Loop (see G.996.1)	Loop Ur	nder Test	Noise Margin						Fixed Up Net Data Rate (kbps)	Noise @ ATU-C	Noise @ ATU-R
	Insertion Loss @ 300 kHz	Loop Length (km)	Minimum	Fast Mod	e		eaved ode				
				Reported (DS/US)	Pass/Fail	Reported (DS/US)	Pass/Fail				
ETSI-1	40 dB	2.80	6 dB					4896	320	Euro-K	ETSI-A
ETSI-1	50 dB	3.50	6 dB					2144	128	Euro-K	ETSI-A
ETSI-1	20 dB	1.40	6 dB					6144	640	ETSI-B	ETSI-B
ETSI-1	30 dB	2.15	6 dB					2048	512	ETSI-B	ETSI-B
ETSI-1	60 dB	4.20	6 dB					576	128	ETSI-A	ETSI-A

326 8.6 ADSL Functionality Tests

327 5 individual tests – 5 must be passed

Test 8.6.1	Bit Swa	ip Test
Test Configuration	1.	See Figure 2
	2.	Configure the DSLAM for rate adaptive fast channel mode of operation with the
		maximum downstream net data rate limited
		to 6432kbits/s and the maximum upstream
		net data rate limited to 800kbits/s, using a
		target noise margin of 6dB. These are the
		minimum compliance limits specified for Section 8.1.1.
	3.	Connect ATU-R and ATU-C with a stable
		connection at 9000ft 26AWG or 2.7km
		ETSI-1 with -140dBm/Hz AWGN noise
		added at both the ATU-C and ATU-R ends.
	4.	All single frequency tone amplitudes that are
		applied are referenced in terms of power
		levels (dBm) at the injection point on the
		loop, calibrated with the ATU-R and ATU-C
		modems replaced with calibrated 100 Ohm
		$\pm 1\%$ resistors. Measurements performed
		into a 1kHz resolution bandwidth. Note that
		with a 1kHz resolution bandwidth the power
		spectral density value will be 30dB (in
		dBm/Hz) less than the power level (in dBm),
		limited by the noise floor of the test
		equipment used for calibration.
	5.	To allow the tone power to be negligible
		during ADSL synchronization the source
		should be able to provide -110dBm power in
		the interferer tone with low background
		noise in the region 25.875kHz to 2208kHz.
		Some arbitrary waveform generators may
		provide too much power at minimum
		settings (spectrum and vector analyzers are
		alternatives).

Method of Procedure	1.	Randomly select a value, <i>n</i> , in the range
	1.	70-100, ensuring that the tone selected has
		assigned bits as described in the downstream
		bits per tone map. Avoid use of the pilot
		tone #64 or any unpopulated tones.
	2.	Record and report the value of <i>n</i> used.
	3.	Connect ATU-R and ATU-C as per test
		configuration details with the tone disturber
		<i>n</i> selected in step 1 applied at the ATU-R
		and set to -110 dBm.
	4.	Activate management port to record the
		downstream bits per tone map.
	5.	Increase the tone power to -75dBm power
		and repeat step 3. Observe any downstream
		bit swap operation without retraining of the
		modems or change in the downstream net
		data rate.
	6.	Continue to increase the tone power in
		5dBm steps until downstream bit swap
		operation or retrain of the modems occurs.
		Record this tone power value in the report.
	7.	Randomly select a value, <i>n</i> , in the range 10 -
		20, ensuring that the tone n has assigned
		bits as described in the upstream bits per
		tone map. Avoid use of the pilot tone #16 or
		any unpopulated tones.
	8.	Record and report the value of n used.
	9.	Connect ATU-R and ATU-C as per test
		configuration details with the tone disturber
		<i>n</i> selected in step 7 applied at the ATU-C
	10	and set to -110 dBm.
	10.	Activate management port to record the
	11	upstream bits per tone map.
	11.	Increase the tone power to -75 dBm power and repeat step 3. Observe any upstream bit
		and repeat step 3. Observe any upstream bit swap operation without retraining of the
		modems or change in the upstream net data
		rate.
	12	Continue to increase the tone power in
	12.	5dBm steps until upstream bit swap
		operation or retrain of the modems occurs.
		Record this value in the report.
Expected Result	The bit	swap protocol re-deploys the allocation of bits
r ,		he sub-carriers with no retrain of the modems
	-	ge in the net data rates.

Test 8.6.2	Check ADSL Diagnostic Tools
Test Configuration	See Figure 1
Method of Procedure	Use the software supplied by the ATU-R vendor to see operational parameters of the ATU-R, or use a web browser, whichever is recommended by the vendor.
Expected Result	The following can be seen by one of these methods: upstream train rate, downstream train rate, upstream noise margin, downstream noise margin, upstream cell rate, downstream cell rate. The results reported from the ATU-C shall match the results reported from the ATU-R. Tools will be used to the extent available.

Test 8.6.3	Dying gasp
Test Configuration	See Figure 1
Method of Procedure	Establish an ADSL circuit between the DSLAM and the
	ATU-R, and then remove the input power from the
	ATU-R by disconnecting AC (or USB cable for a bus
	powered USB modem) from the ATU-R. This condition
	will simulate a power outage.
Expected Result	The ATU-R sends a Dying Gasp indication to the
	DSLAM.

331

Test 8.6.4	Modular connector pins
Test Configuration	See Figure 1
Method of Procedure	Verify that ADSL signal is connected to pins 3 and 4 of
	RJ-14 connector.
Expected Result	ATU-R is connected via pins 3 and 4.

332

Test 8.6.5	Ethernet Connector Pinout
Test Configuration	See Figure 1
Method of Procedure	Verify Ethernet connector pinout is such that a straight through cable is used between computer and modem.
Expected Result	ATU-R Ethernet port is configured for straight through connection to the computer.

333 8.7 DSL Noise Spikes/Surges Tests

The purpose of these tests is to verify that xDSL functionality is not impacted by sudden spikes or surges of noise on the line. The errors recorded shall be the sum of upstream and downstream errors. Both the ATU-R and ATU-C will be stressed during this test.

337 8.7.1 Test Configuration

- The test configuration shall be as shown in figures 3 to 6 in Section 7.
- 339 8.7.2 Test Description
- Train at MAX DN/MAX UP down/up in fast mode
 Set up the loop simulators for a MID-CSA #6 loop (26 AWG at 6000 feet, ETSI equivalent 1800 m)
 As this is a physical layer test, the CPE can be set up for RFC 1483² bridging/routing, or

² RFC 1483 has been obsoleted by RFC 2684.

344		PPP bridging/routing.
345	2)	Set CO side impairments to:
346		• -75.0 dBm HDSL NEXT with the total power in the frequency range of 0 to 1.544
347		MHz, and -140.0 dBm/Hz white noise
348		Continuously running
349	3)	Allow the CPE and DSLAM to train.
350	4)	Do a "clear counters" command on the DSLAM, if available.
351	5)	Note the margins on both ends of the connection.
352	6)	Verify there are no CRC errors.
353	7)	Verify that traffic is being transmitted and received by the traffic generator/analyzer.
354	8)	Set CPE side impairments to 24 HDSL NEXT with the total power in the frequency
355		range of 0 to 1.544 MHz, and -90.0 dBm/Hz white noise.
356	9)	Turn on the CPE side impairments for one second.
357	10)	After 1 second, observe whether the traffic sent by the traffic generator/analyzer is
358		received by the traffic generator/analyzer. If traffic stops, wait adequate time to
359		determine if the traffic resumes.
360	11)	Verify that the traffic is received by the traffic generator/analyzer once noise is backed
361		off. Note that it is expected that during the noise surge there may be a short interruption
362		of the data stream.
363	12)	Also verify that no other abnormal conditions appear on the line; <i>e.g.</i> , rise in error
364		ratios, rise in CRCs.
365	13)	Repeat steps $9 - 12$ and add one second of time to the noise surge per session.
366	14)	Perform these steps until you reach 10 seconds or the CPE retrains. When the CPE
367		retrains, verify that traffic resumes as normal, traffic should resume within 60 s.

368 8.7.3 Results

369 10 individual tests – 10 must be passed (recovery or retrain after noise condition)

Trial	Seconds per Noise Spike	Downstream Margin Before Noise Applied	Upstream Margin Before Noise Applied	Downstream Margin After Noise Applied	Upstream Margin After Noise Applied	Corrected Superframes	Uncorrected Superframes	ES Events	Traffic Resumed?	CPE Retrain?
1	1									
2	2									
3	3									
4	4									
5	5									
6	6									
7	7									
8	8									
9	9									
10	10									

370 8.7.4 Expected Results

371 Despite how many spikes or surges of noise to hit the DSL line, the line shall always recover gracefully, or retrain

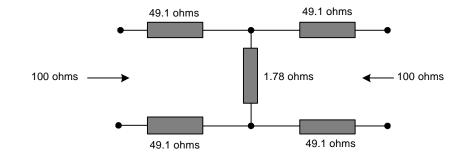
if conditions deteriorate sufficiently. Neither the ability to train nor the ability to pass traffic at any OSI layer shall
be impacted by a single spike/surge or multiple spike/surges. Errors shall be counted during and after noise is

applied. Only record errors in the case of no retrain.

Test 8.8.1	Impulse noise test for North America loops
Test Configuration	 This test is a standard based on G.992.1 Section F.2.2 and G.996.1 Section 5.1.3.1 using CSA Loop #6. 1. Connect the CPE to the DSLAM through a loop simulator. Set the loop simulator to CSA Loop #6 (9000 feet of 26 AWG wire) or ETSI-1 loop (2700 meters of 0.4 mm wire). 2. Set the upstream and downstream target margins to 6 dB. Train the ADSL system to MAX UP and MAX DN, with interleaved operation.
	Bit Error Rate Testing (BERT) may be done with any of these possible solutions, with the recommendation that testing be accurate:
	 ATM test equipment. Using HEC or CRC error counts to calculate the approximate BER. Internal BER capabilities available within some
	products.Any other software or hardware capable of testing bit error rate.
Method of Procedure	 Inject a 20 HDSL disturber and -140 dBm/Hz white noise disturber at the CO end of the loop. Train the modems in fast mode. Lower the 20 HDSL disturber from the reference level by 4 dBm. Inject 15 ADSL c1 impulses (defined in G.996.1) spaced at least 1 second apart into the circuit at th CO end of the loop simulator. Repeat, varying the amplitude, until about half of the impulses cause errored seconds. Note the amplitude in millivolts at which half of the impulses caused errors. Where a DSLAM imposes minimum counter periods (for example 15 minutes) then the application of impulses should be maintained at least 1 second apart, but the test can be performed for longer, applying more than 15 impulses. For half the applied pulses to cause an error apply the limit: 0.5 X number of impulses +/- 5%. Repeat steps 4 through 6 using ADSL c2 impulses Calculate the probability that a second will be errored using the formula in G.996.1. Repeat steps 1 through 8, injecting the 20 HDSL
Expected Result	disturber, white noise, and impulses at the customer end of the loop. The probability of errored seconds (ES) shall be less
Expected Result	than 0.14% for tests at both ends of the loop.

375 **8.8** Operation in the Presence of Impulse Noise Events (G.996.1, Test Impulse 1)

376 **8.9 Stress Tests**

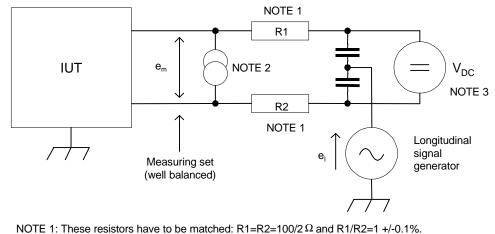

377 The purpose of this test is to try and force instability and/or failure to the CPE/Drivers in a non-destructive test.

378	8.9.1 Test Description
379	• Configure to train in Rate Adaptive at Startup mode at Maximum Rate down/up.
380	• Set up the loop simulators for a 26 AWG at 12000 feet or ETSI-1 loop (0.4 mm at 3.6 km).
381	• Inject –140 dBm/Hz white noise disturber at both ends of the loop.
382	• Train the CPE in fast mode at 6 dB noise margin.
383	• Increase the noise level by 6 dB.
384	• Configure the traffic generator/analyzer to provide MAC frames as a payload source for the
385	duration of the test. The engineer will need to adjust the rate of the MAC frames to an
386	acceptable level such that dropped frames due to LAN-based collisions or otherwise are
387	negligible. Record these rates and the MAC frame size used for the test (suggested default 1024
388	bytes including FCS).
389	• Run one over night BER test (8 hour minimum).
390	
391	Bit Error Rate Testing (BERT) may be done with any of these possible solutions, with the recommendation that the
392	test be accurate:
393	• ATM test equipment.
394	• Using HEC or CRC error counts to calculate the approximate BER.
395	• Internal BER capabilities available within some products.
396	• Any other software or hardware capable of testing bit error rate.
397	
398	The test setup is identical to the setup in Section 8.1.1 for testing Fast Mode Maximum Rate down/up over 12 kft
399	26 AWG. On this loop, the modems are expected to train without excess margin. The injected noise level is
400	increased with 6 dB, followed by a BER measurement over a measurement period of minimum 8 hours.
401 402	Expected Results
402	1 individual test – 1 must be passed
403	1 mairianai iesi – 1 masi be passea
405	The BER shall be less than 10^{-7} for the entire test. This test is Pass/Fail only.

406 **8.10 Electrical Compatibility Tests**

407 *4 individual tests – 4 must be passed*

- 408
- 409 To perform the tests described in this section, two test modes should be available in the device under test:
- Test Mode "continuously sending:" In this test mode, the device under test shall continuously generate signals at it maximum power and maximum spectrum without being connected to a counterpart modem. The modem shall send a pseudo-random data sequence of 2¹⁵-1 or higher.
- Test mode "online quiet:" In this test mode, the device under test shall be in a condition where the line interface is powered up, but not transmitting and signal (= inactive, driving 0 V).
- 415


417 Figure 7: 40 dB attenuator for tests 8.10.1 and 8.10.2

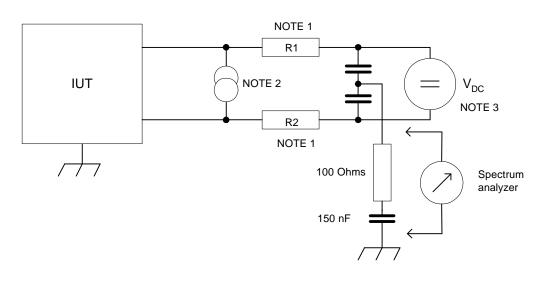
Test 8.10.1	Analog Front End Power		
Test Configuration	DSLAM connected to CPE through a 40 dB flat attenuator, with 100 Ohms		
	impedance towards DSLAM and CPE.		
Method of Procedure	1. Connect Modem to test setup.		
	2. Configure Modem for Maximum Data Rate down/up.		
	3. Train modem.		
	4. Measure the total power generated into 100 Ohms over the signal		
	passband defined in G.992.1, averaged over a measurement period of at		
	least 2 seconds.		
Expected Result	Analog Front End Power within the limits specified in Annex A of ITU-T		
	G.992.1.		

419

Test 8.10.2	PSD Measurements	
Test Configuration	DSLAM connected to CPE through a 40 dB flat attenuator, with 100 Ohms impedance towards DSLAM and CPE.	
Method of Procedure	 Connect Modem to test setup. Configure Modem for Maximum Data Rate down/up. Train modem. Measure the PSD generated into 100 Ohms over the signal passband defined in G.992.1, averaged over a measurement period of at least 2 seconds. 	
Expected Result	Power Spectral Density within the limits defined in Annex A of ITU-T G.992.1.	

Test 8.10.3	Longitudinal Balance – LCL
Test Configuration	See Figure 8
Method of Procedure	 Set up test according to Figure 8. Activate test mode "online quiet." Measure Longitudinal Conversion Loss as specified in G.117 in the frequency range specified in G.992.1.
Expected Result	Balance ≥ 40 dB between 25 kHz and 1104 kHz.

NOTE 1: These resistors have to be matched: R1=R2=100/2 Ω and R1/R2=1 +/-0.1%. NOTE 2: For LTU test only if remote power feeding is supplied. NOTE 3: For NTU test only if remote power feeding is required. NOTE 4: During regenerator test (where required) each wire on the side which is not under test has to be connected to ground by a terminating impedance having the value of 100/2 Ω in series with a capacitance of 0.33 μ F.


423 Figure 8: Measurement Method for Longitudinal Conversion Loss (Sample Setup)

424 The longitudinal conversion loss is given by: $LCL = 20 \log (el/em) [dB]$:

- Where el is the applied longitudinal voltage referenced to the building ground and
- em is the resultant metallic voltage appearing across the line interface of the device under test (terminated by 100 Ω).

428

Test 8.10.4	Longitudinal Balance – LOV
Test Configuration	See Figure 9
Method of Procedure	 Set up test according to Figure 9. Activate test mode "continuously sending." Measure Longitudinal Output Voltage as specified in G.117.
Expected Result	The observed LOV shall have an rms voltage of below -46 dBV, measured in a power bandwidth of 10 kHz , centered over any frequency in the range from 5.1 kHz to f _{max} , and averaged in any one second period. Compliance with this limitation is required with a longitudinal terminating impedance having value $Z_L(\omega) = R_L + 1/(j\omega x C_L)$. Fmax = 415 kHz for CPE test (upstream) Fmax = 1825 kHz for CO test (downstream) $R_L = 100$ Ohms $C_L = 150$ nF

NOTE 1: These resistors have to be matched: R1=R2=R_T/2 and R1/R2=1 +/-0.1%. NOTE 2: For LTU test only if remote power feeding is supplied. NOTE 3: For NTU test only if remote power feeding is required DC blocking capacitors=C_B.

430

431

Figure 9: Measurement Method for Longitudinal Output Voltage (LOV)

432 **8.11 Reporting of ADSL Line Conditions**

433 1 individual test – 1must be passed

Test 8.11.1	Margin Verification for CPE
Test Configuration	To ensure vendors do not optimize for some specific
	test loops, the test engineer will randomly select one
	individual test from Category I, and will also perform
	the test in Category II.
	Category I:
	1. Section 8.1.2 (HDSL): Any length with Expected Downstream Rate between 900 and 7000 kbps
	2. Section 8.1.3 (DSL (ISDN)): Any length with Expected Downstream Rate between 900 and 7000 kbps
	3. Section 8.1.4 (T1adj): Any length with Expected Downstream Rate between 900 and 7000 kbps
	Category II:
	 Section 8.4 (Bridged tap): Any length with Expected Downstream Rate between 900 and 7000 kbps with tap length of at least 250 feet
	Bit Error Rate Testing (BERT) may be done with any of
	these possible solutions. However, the test engineer
	shall calculate the measured BER back to bit-pipe BER
	as this is used in the pass/fail criterion. The test
	engineer shall take the extra measurement errors into
	account for the pass/fail decision. It is recommended
	that the testing be accurate.
	• ATM test equipment.
	• Using HEC error counts, CRC error counts or Idle Cell Payload error counts to calculate the approximate BER. These error counters are defined in ITU-T G.997.1.
	 Internal BER capabilities available within some products.
	1
	 Any other software or hardware capable of testing bit error rate.
Method of Procedure	1. Configure CPE and DSLAM as for Section 8.1
Method of Procedure	tests and in Fast mode.
	2. Connect CPE and DSLAM to first test loop option,
	with the noise injected at the appropriate reference
	power level. This power level is considered the 0
	dB margin level for that type of noise.
	3. Force a new initialization and wait for modems to sync as for Section 8.1 tests.
	4. Wait 3 minutes after initialization for bitswaps to settle.
	5. Check reported margin and document.
	 Increase the noise power level by 1 dB on the CPE side only.
	7. Wait 1 minute.
	8. Repeat steps 6 and 7 until the noise power is
	increased by target_margin – 1dB.
	9. At this point the power level of the noise is at the
	target_margin – 1 dB level. 10. Execute a BER test for 45 minutes. Document the

	measured BER.11. Repeat steps 2 to 10 for the second, third and fourth test loop.
	If the measured BER result falls in the interval $1.5E-7 < BER < 5E-7$ for a specific loop option, that BER test (steps 4 to 10) shall be repeated a single time for that loop option.
	In order for the BER result to be valid, the modems should not have re-initialized during steps 4 to 10. If a re-initialization has occurred, the test for that loop option shall be repeated once.
Expected Result	Reported Margin: The CPE modem passes the reported margin criteria, if for all 4 test loops: target margin + 3dB >= downstream reported margin >= target margin - 1dB
	Note: The 3 dB upper tolerance assumes a "good" implementation of the Rate Negotiation at ATU-C side.
	Measured Margin: The CPE modem passes the measured margin criteria, if for all 4 test loops: BER measured < 1.5E-7 (Note: This corresponds with a modem actual margin >= tested margin = target margin - 1 dB)
	The CPE modem passes the margin verification test if both the reported margin criteria and the measured margin criteria are passed.

Test 8.11.2	Margin Verification for DSLAM (optional)
Test Configuration	To ensure vendors do not optimize for some specific
	test loops, the test engineer will randomly select one
	individual test from Category I, and will also perform
	the test in Category II.
	Category I:
	 Section 8.1.2 (HDSL): Any length with Expected Upstream Rate between 96 and 608 kbps
	2. Section 8.1.3 (DSL (ISDN)): Any length with Expected Upstream Rate between 96 and 608 kbps
	Category II:
	1. Section 8.4 (Bridged tap): Any length with Expected Upstream Rate between 96 and 608 kbps with tap length of at least 250 feet
	Bit Error Rate Testing (BERT) may be done with any of
	these possible solutions. However, the test engineer
	shall calculate the measured BER back to bit-pipe BER
	as this is used in the pass/fail criterion. The test
	engineer shall take the extra measurement errors into
	account for the pass/fail decision. It is recommended
	that the testing be accurate.
	• ATM test equipment.
	• Using HEC error counts, CRC error counts or Idle Cell Payload error counts to calculate the
	approximate BER. These error counters are defined in ITU-T G.997.1.
	• Internal BER capabilities available within some
	products.
	• Any other software or hardware capable of testing
	bit error rate.
Method of Procedure	1. Configure CPE and DSLAM as for Section 8.1 tests and in Fast mode.
	2. Connect CPE and DSLAM to first test loop option,
	with the noise injected at the appropriate reference
	power level. This power level is considered the 0
	dB margin level for that type of noise.
	3. Force a new initialization and wait for modems to
	sync as for Section 8.1 tests.
	4. Wait 3 minutes after initialization for bitswaps to settle.
	5. Check reported margin and document.
	 Increase the noise power level by 1 dB on the DSLAM side only.
	7. Wait 1 minute.
	8. Repeat steps 6 and 7 until the noise power is
	increased by target_margin – 2dB.
	9. At this point the power level of the noise is at the
	target_margin -2 dB level.
	10. Execute a BER test for 110 minutes. Document the measured BER.
	11. Repeat steps 2 to 10 for the second, third and
	fourth test loop.

	If the measured BER result falls in the interval 1.5E-7 < BER < 5E-7 for a specific loop option, that BER test (steps 4 to 10) shall be repeated a single time for that loop option.
	In order for the BER result to be valid, the modems should not have re-initialized during steps 4 to 10. If a re-initialization has occurred, the test for that loop option shall be repeated once.
Expected Result	Reported Margin: The CO modem passes the reported margin criteria, if for all 4 test loops: target margin + 2 dB >= upstream reported margin >= target margin - 2dB
	Measured Margin The CO modem passes the measured margin criteria, if for all 4 test loops: BER measured < 1.5E-7 (Note: This corresponds with a modem actual margin >= tested margin = target margin - 2 dB)
	The CO modem passes the margin verification test if both the reported margin criteria and the measured margin criteria are passed.

435 9 Higher Layer Test Cases

436 9.1 ATM Connectivity Tests

437 Test configuration is not specified; any configuration suitable for ATM testing may be used.

438 9 individual tests – 8 must be passed (all except Test 9.1.5)

439

Test 9.1.1	Loopback at ATU-R
Test Configuration	See Figure 2
	• The ATM switch or simulator may be removed if
	traffic simulator/analyzer in use is capable of
	terminating the ATM traffic directly from the
	DSLAM
Method of Procedure	Set up a bi-directional connection on a known VPI/VCI,
	<i>e.g.</i> , VP=0 and VC=35. The ATU-R shall loopback this
	VPI/VCI on the ATM level.
	The ATM Cells from generator/analyzer (bit error rate
	tester or BERT) are filled with a S-PRBS9 or O.191 test
	cell sequence, or a RFC 2544-formatted frame
	sequence.
	The downstream channel is loaded up to the capacity of
	the upstream channel using flat rate distribution (<i>i.e.</i> ,
	constant bit rate, CBR, with cell rate matched to the
	physical data rate).
Expected Result	The ATU-R is looped back, BER is less than 10^{-7} when
	using S-PRBS9, or CER is less than 3.84e ⁻⁵ if using
	either O.191 test cells or the RFC 2544 test
	methodology.

440

Test 9.1.2	Maximum number of VC's
Test Configuration	• See Figure 1
	• The ATM switch or simulator may be removed if
	traffic simulator/analyzer in use is capable of
	terminating the ATM traffic directly from the
	DSLAM
Method of Procedure	Cross connect VC's between the ATU-R and the ATU-
	C until 16 VC's are successfully configured or until the
	system will not accept any more, whatever is less.
Expected Result	Maximum number of VC's is the same as that
	published in the ATU-R, or DSLAM documentation, or
	16, whichever is less (for a DSLAM, the maximum
	number of VC's is considered to be the maximum
	number per port).

Test 9.1.3	Maximum VPI/VCI Range
Test Configuration	• See Figure 1
	• The ATM switch or simulator may be removed if
	traffic simulator/analyzer in use is capable of
	terminating the ATM traffic directly from the
	DSLAM
Method of Procedure	Configure VPI/VCI just within the published range, and
	just outside the published range.
Expected Result	Capability to choose VPI/VCI falls within published
	range for the DSLAM or the ATU-R modem, whichever
	is more restrictive.

Test 9.1.4	Default VPI/VCI
Test Configuration	• See Figure 2
	• The ATM switch or simulator may be removed if
	traffic simulator/analyzer in use is capable of
	terminating the ATM traffic directly from the
	DSLAM.
Method of Procedure	Having the ATU-R/CPE in its default configuration,
	cross connect a circuit in this default VPI/VCI and pass
	cells over the circuit.
Expected Result	Cells must be passed across the circuit using the default
	VPI/VCI value from the CPE General Information
	table.

443

Test 9.1.5	SVC Support (Optional)
Test Configuration	• See Figure 2
	• The ATM switch or simulator may be removed if
	traffic simulator/analyzer in use is capable of
	terminating the ATM traffic directly from the
	DSLAM.
Method of Procedure	Configure a SVC and verify NSAP ATM addressing
	and native E.164 addressing. (NOTE: Extra details of
	this method of procedure are required for reproducible
	test results.)
Expected Result	NSAP ATM addressing and E.164 addressing work.

445

Test 9.1.6	QoS Support for CBR / UBR Traffic
Test Configuration	• See test network in Figure 2.
	• The ATM switch or simulator may be removed if
	traffic simulator/analyzer in use is capable of
	terminating the ATM traffic directly from the
	DSLAM (unless a back-to-back connection proves
	to be critical or unstable).
	• The loop simulator may be bypassed.
	The noise generator may be removed.
Method of Procedure	Only run this test if CBR functionality is implemented
	on both the DSLAM and ATU-R/CPE.
	• Configure the test network as follows:
	• Set up a bi-directional connection on a known
	VPI/VCI (<i>e.g.</i> , VP=1 and VC=35) for CBR traffic.
	For this connection configure the DSLAM, setting
	the peak traffic rate (in kbps) or the peak cell rate
	PCR (in ATM cells/s) equal to the maximum
	ATU-R upstream data rate achieved during
	synchronization.
	• Set up a bi-directional connection on a separate
	known VPI/VCI (<i>e.g.</i> , VP=2 and VC=35) for UBR
	traffic. For this connection configure the DSLAM,
	setting the peak traffic rate (in kbps) or the peak
	cell rate PCR (in ATM cells/s) equal to the
	maximum ATU-R downstream data rate achieved
	during synchronization.
	 Configure both channels on the Traffic Simulator / Analyzer for 0.191 or RFC 2544 generation and
	analysis.
	 Configure the ATU-R to loop back traffic.
Expected Result	O.191 or RFC 2544 analysis shall show that only UBR
	traffic is discarded and that all of the CBR traffic is
	delivered, if UBR and CBR are implemented.
	denvered, if ODK and CDK are implemented.

Test 9.1.7	QoS Support for rtVBR / UBR Traffic
Test Configuration	• See test network in Figure 2.
	• The ATM switch or simulator may be removed if
	traffic simulator/analyzer in use is capable of
	terminating the ATM traffic directly from the
	DSLAM (unless a back-to-back connection proves
	to be critical or unstable).
	• The loop simulator may be bypassed.
	• The noise generator may be removed.
Method of Procedure	 Only run this test if rtVBR functionality is implemented on both the DSLAM and ATU-R/CPE. Configure the test network as follows:
	 Set up a bi-directional connection on a known VPI/VCI (<i>e.g.</i>, VP=1 and VC=35) for rtVBR traffic. Set the peak traffic rate equal to the maximum ATU-R upstream data rate and the sustained traffic rate equal to half the maximum ATU-R upstream data rate. Set up a bi-directional connection on a separate known VPI/VCI (<i>e.g.</i>, VP=2 and VC=35) for UBR traffic. Set the traffic rate equal to the maximum ATU-R downstream data rate. Configure both channels on the Traffic Simulator / Analyzer for O.191 or RFC 2544 generation and analysis.
Expected Result	Configure the ATU-R to loop back traffic. O.191 or RFC 2544 analysis shall show that all of the cells in the rtVBR data stream are delivered, if rtVBR and UBR are implemented. Additionally, a portion of the UBR data stream shall be delivered.

Test 9.1.8	QoS Support for nrtVBR / UBR Traffic
Test Configuration	• See test network in Figure 2.
	• The ATM switch or simulator may be removed if
	traffic simulator/analyzer in use is capable of
	terminating the ATM traffic directly from the
	DSLAM (unless a back-to-back connection proves
	to be critical or unstable).
	• The loop simulator may be bypassed.
	• The noise generator may be removed.
Method of Procedure	Only run this test if nrtVBR functionality is
	implemented on both the DSLAM and ATU-R/CPE.
	• Configure the test network as follows:
	• Set up a bi-directional connection on a known
	VPI/VCI (e.g., VP=1 and VC=35) for nrtVBR
	traffic. Set the peak traffic rate equal to the
	maximum ATU-R upstream data rate and the
	sustained traffic rate equal to half the maximum
	ATU-R upstream data rate.
	• Set up a bi-directional connection on a separate
	known VPI/VCI (<i>e.g.</i> , VP=2 and VC=35) for UBR
	traffic. Set the traffic rate equal to the maximum
	ATU-R downstream data rate.
	Configure both channels on the Traffic Simulator /
	Analyzer for O.191 or RFC 2544 generation and
	analysis.
	Configure the ATU-R to loop back traffic.
Expected Result	O.191 or RFC 2544 analysis shall show that some UBR
	and some nrtVBR cells are delivered, if nrtVBR and
	UBR are implemented.

Test 9.1.9	F5 OAM Support
Test Configuration	• See test network in Figure 2.
	• The ATM switch or simulator may be removed if traffic simulator/analyzer in use is capable of terminating the ATM traffic directly from the DSLAM (unless bash to bash superstime removes)
	DSLAM (unless a back-to-back connection proves to be critical or unstable).
	• The loop simulator may be bypassed.
	• The noise generator may be removed.
Method of Procedure	• Configure the test network for a bi-directional connection on a known VPI/VCI (<i>e.g.</i> , VP=0 and VC=35).
	• Send an F5 OAM segment loopback cell from the network to the CPE.
Expected Result	Confirm that a response cell is received from the network.
Method of Procedure	• Send an F5 OAM end-to-end loopback cell from the network to the CPE.
Expected Result	Confirm that a response cell is received from the network.

9.2 Layer 3 Ethernet or USB Interface RFC 2684 bridged mode 450

- Provision the DSLAM with a fixed set of values: 451
- 452 Margin up and down: 6dB
- Data Path: Fast 453 •
- 454 FEC redundancy: Off (if configurable) •
- 455 • Trellis Coding: enabled
- 456 • Bit swapping: enabled
- 457 Payload scrambling: enabled •
- Operational Mode: Autodetect (T1.413-1998/G.992.1 Annex A) 458 •

9.2.1 Packet Throughput Test 459

460 The purpose of this test is to verify the throughput for a selected list of provisioned line rates (down/up) using IP 461 Frame transfers of varying length.

462

463 The packet or frame size is defined in RFC 1242, section 3.5, Data Link Frame Size, and states "The number of 464 octets in the frame from the first octet following the preamble to the end of the FCS, if present, or to the last octet 465 of the data if there is no FCS". This specifically defines the packet or frame size in terms of the MAC frame, and 466 hence is not the IP packet size.

467

468 Methodology:

The throughput test specified here satisfies the terminology criteria of RFC 1242 and the test 469

470 methodology specified in RFC 2544. From RFC 1242, throughput is "the maximum rate at which none of the

471 offered frames are dropped by the device." From RFC 2544, the methodology to measure throughput is to "Send

472 a specific number of frames at a specific rate through the DUT and then count the frames that are transmitted by

473 the DUT." If the count of offered frames is equal to the count of received frames, the rate of the offered stream is

474 raised and the test is rerun. If fewer frames are received than were transmitted, the rate of the offered stream is

475 reduced and the test is rerun. In this test specification, the number of frames transmitted from one end of the

476 ADSL link are compared with the number of frames received at the far end of the ADSL link.

477 The frame size is payload only. Throughput shall be measured for MAC frame length (see RFC 1242 Section 3.5).

478 White noise shall be injected into the loop at **both** upstream and downstream ends at a power level of

479 $-140 \ dBm/Hz$.

480 (The errors recorded shall be the sum of upstream and downstream errors. To pass an individual test, HEC errors shall be zero, excluding HEC errors related to modem training.) 481

9.2.1.1 Test Configuration 482

483 The configuration shall be as shown in figures 3 to 6.

9.2.1.2 Test Description 484

485 486 1. Set up the loop simulators for a MID –CSA #6 loop (26 AWG at 6000 feet) or ETSI-1 loop 487 (0.4 mm at 1800 m). 488 Provision the DSLAM at the maximum bit rates as shown in the tables below. 2. 489 3. Set the CPE modem for bridged mode with LLC encapsulation. 490 Let the CPE train. 4. 491 5. Record the modem up and down stream train rates and noise margins in the tables below. 492 Setup traffic generator/analyzer to perform throughput test for selected frame length and connect 6. 493 rate. Test for the throughput in the downstream direction. Reduce the throughput rate of the 494 upstream direction to 90% of the maximum theoretical value sustainable by the ADSL net data 495 rate. Record the downstream throughput rate for compliance purposes and the upstream 496 throughput rate for information only. Repeat the test for throughput in the opposite direction

- 497 using 90% of the maximum downstream theoretical ADSL net data rate. The test shall be run 498 for 60 seconds. 499 7. Record analyzer throughput rate results as frames per second. 500 8. If the count of received frames is equal to the count of offered frames, increase the rate of the offered stream and repeat steps 6 and 7. If the count of received frames is less than the count of 501 offered frames, decrease the rate of the offered stream and repeat steps 6 and 7. 502 9. Divide the analyzer frames per second by the maximum FPS for the connect rate and frame size. 503
 - 10. Record as percentage of maximum connect rate.
- 505 9.2.1.3 Test Results

506 42 individual tests - 42 tests must be passed

- 1. Throughput Test Results 507
- Connect Rate DS: 384 kbps 508 509
 - Connect Rate US: 128 kbps

Analy	zer Recorde	d FPS	Max	FPS	% of	Max	Mai	gin
Frame	DS	US	DS	US	DS	Us	DS	US
Size								
64			452	150				
128			226	75				
256			150	50				
512			75	25				
1024			41	13				
1280			32	10				
1518			28	9				

2. Throughput Test Results 510

Connect Rate DS: 1536 kbps 511 512

Connect Rate US: 384 kbps

Analy	zer Recorde	d FPS	Max	FPS	% of	Max	Mai	rgin
Frame	DS	US	DS	US	DS	Us	DS	US
Size								
64			1811	452				
128			905	226				
256			603	150				
512			301	75				
1024			164	41				
1280			129	32				
1518			113	28				

3. Throughput Test Results 514

515

Connect Rate DS: 8000 kbps

5	1	6
2	T	υ.

Connect Rate US: 800 kbps

		<u>, 66. 666 k</u>	000					
Analy	zer Recorde	d FPS	Max	FPS	% of	Max	Mar	gin
Frame	DS	US	DS	US	DS	Us	DS	US
Size								
64			9434	943				
128			4717	471				
256			3144	314				
512			1572	157				
1024			857	85				
1280			673	67				
1518			589	59				

9.2.1.4 Expected Results 517

518 The percentage of frames achievable for all DSL modems (Ethernet and USB) is 85%. For PCI and USB modems,

519 85% is passing, since their performance will be affected by the efficiency of the PC drivers and the OS on which

520 they are installed. This 85% also assumes the downstream connect rate does not exceed the USB bus maximum.

In that case, the USB max will dictate the Max FPS recorded. 521

9.2.2 Packet Latency Tests 522

523 The purpose of this test is to measure the round trip time of the given transmission chain.

- 524 525 This test takes two forms. First, a test will be done at a specified train rate and various frame sizes.
- 526 Second, a test will be performed at a single frame size and various train rates.
- 527 Methodology: Latency is tested as defined in RFC 1242.
- The traffic generator sends a burst of frames at a specified frame size over the ADSL link at a specified 528
- 529 throughput rate. In the middle of the burst stream it inserts one frame with an identifying trigger (tag).
- 530 The time when the trigger frame is fully transmitted is the Transmit Timestamp. The time the traffic
- 531 analyzer recognizes the trigger frame is the Receive Timestamp. The Latency is calculated as follows:
- 532 (*Receive Timestamp*) minus (*Transmit Timestamp*) = Latency
- 533 (NOTE: Round trip delay is the sum of upstream latency and downstream latency.)

534 9.2.2.1 Latency Test – Single Train Rate with Multiple Frame Sizes

- 9.2.2.1.1 Test Configuration/Description 535
- 536 1. Test configuration shall be as shown in figures 4 to 6.
- 537 2. Set modem to bridge mode.
- 3. Set up the loop simulator for a MID-CSA #6 loop (26 AWG at 6000 feet) or ETSI-1 loop (0.4 mm at 538 539 1800 m).
- 540 4. Train at 384/128 kbps down/up.
- 541 5. Setup the traffic generator/analyzer to perform a latency test for the selected frame length.
- 542 6. Record traffic generator/analyzer latency test results.
- 7. Repeat for the 7 different frame lengths as shown in table below. 543
- 544 8. Reset equipment.

545 9.2.2.1.2 Results

546 7 individual tests – 7 must be passed

Packet Size Round Trip			Times in mS		
	Min.	Ave.	Max.		
64					
128					
256					
512					
1024					
1280					
1518					

- 547 9.2.2.1.3 Expected results
- 548 Round trip average latency times shall be less than 255 ms.

549 9.2.2.2 Latency Test – Single Frame Size with Multiple Train Rates

- 550 9.2.2.2.1 Test Configuration/Description
- 551 Frame size shall be 1280 bytes.
- 552
 553 1. Set modem to bridge mode.
 554 2. Set up the loop simulator for a MID-CSA #6 loop (26 AWG at 6000 feet) or ETSI-1 loop (0.4 mm at 1800 m).
 556 3. Train at specified bit rate.
 557 4. Setup the traffic generator/analyzer to perform a latency test for the selected train rate.
 558 5. Record traffic generator/analyzer latency test results.
 559 6. Repeat for the different train rates as shown in the table below.
- 560 7. Reset equipment.
- 561 9.2.2.2.2 Results
- 562 *3 individual tests 3 must be passed*
- 563

Trained Rate	Round Trip Times in mS		
	Min.	Ave.	Max.
384/128 kbps			
1536/384 kbps			
MAX DN/MAX UP			

- 564 9.2.2.2.3 Expected results
- Round trip average latency times shall be less than 255 ms.

566 9.3 PPPoE End-to-End Connectivity Test

- 567 *1 individual test 1 must be passed*
- 568

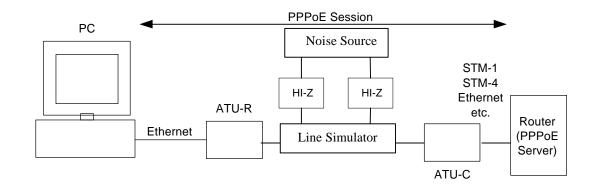
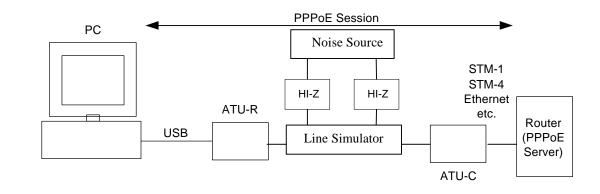
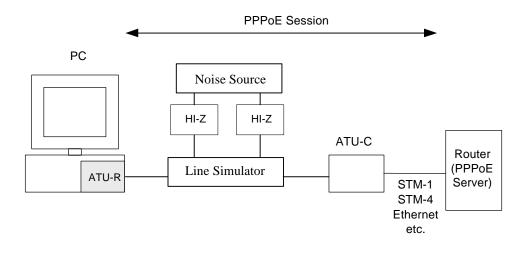
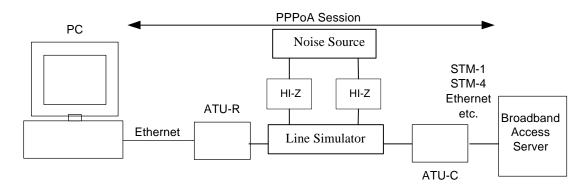




Figure 10: Test setup for PPPoE testing with Ethernet modems

572573Figure 11: Test setup for PPPoE testing with USB modems

576


Figure 12: Test setup for PPPoE testing with PCI modems

577

Test 9.3.1	PPPoE
Test Configuration	See Figure 10, 11, or 12 (as applicable)
Method of Procedure	Terminate PPPoE session between the computer and the router. Verify connectivity by passing traffic over this PPPoE session.
Expected Result	Transmitted packets are received.

578 9.4 PPPoA End-to-End Connectivity Test

- 579 *1 individual test 1 must be passed*
- 580

581582Figure 13: Test setup for PPPoA testing with Ethernet modems

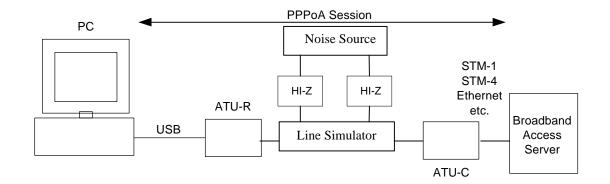


Figure 14: Test setup for PPPoA testing with USB modems

586

587

588

Figure 15: Test setup for PPPoA testing with PCI modems

Test 9.4.1	РРРоА
Test Configuration	See Figure 13, 14, or 15 (as applicable)
Method of Procedure	Terminate PPPoA session between the computer and the broadband access server. Verify connectivity by passing traffic over this PPPoA session.
Expected Result	Transmitted packets are received.

590 9.5 RFC 2684 End-to-End Connectivity Test

591 *1 individual test – 1 must be passed*

Test 9.5.1	Verify IP Bridged
Test Configuration	See Figure 2, applicable to Ethernet modem only
Method of Procedure	Configure the test environment including the ATU-R and the computer so that the ATU-R/CPE Ethernet port terminates a bridge section. The second termination of the bridge section should be implemented at an appropriate device within the testing environment (<i>e.g.</i> , DSLAM, PoP). Pass IP packets over the complete bridge section and verify the proper reception at the destination (<i>e.g.</i> , PoP, Host PC).
Expected Result	Transmitted packets are received.

592 **9.6 Usability Test**

593 1 individual test – 1 must be passed

<u> </u>	
Test 9.6.1	PC Re-boot
Test Configuration	See Figure 2, only applies to PCI NIC, USB modems
Method of Procedure	From a freshly installed operating system, quantify the number of reboots required to install all drivers on a PC.
Expected Result	No more than two reboots are required.

Annex A: Accuracy of Loop Simulators and Noise Sources (Normative)

597 A.1 Loop Simulators

598 a) Attenuation

599 Loop attenuation which corresponds to the Insertion Loss $10\log|H(f)|^2$, is expressed in dB, and shall be calculated 600 from the RLCG parameters using two-port ABCD modeling methodology as specified in ANSI T1.417 601 Section B.3.1 (for both straight loops and loops with bridged taps). The RLCG cable parameters shall be as

specified in ITU-T Rec. G.996.1 (June 1999) (PIC cable at 70 degrees Fahrenheit for North American test loops,
 PE cable at 20 degrees Celsius for European test loops).

604

For the loop simulator used in testing, the simulated loop attenuation shall be measured over the frequency band [f1, f2], where frequency f1 shall be 20 kHz. The frequency f2 shall be the frequency at which the nominal loop attenuation is 90dB (under review) (see Note below) or the passband upper bound frequency (138 kHz upstream or 1104 kHz downstream), whichever is the lowest. At least one measurement shall be made per 10 kHz interval. The Mean Error and Mean Absolute Error (MAE) of the measured simulated loop attenuation values (in dB),

610 relative to the theoretical loop attenuation values (in dB), shall be calculated.

611 612

2 Mean Absolute Error (MAE) is given by:

613

614 i=N615 $MAE = N^{-1}\sum_{i=1}^{N} | (Actual Attenuation_i (dB) - Theoretical Attenuation_i (dB)) |$

617

619

631

N is determined by the number of points necessary to measure the attenuation in steps of 10 kHz or less.

The loop simulator shall be compensated by adjusting the loop length such that the MAE is minimized. After
compensation, the MAE shall be less than 0.5 dB. The Mean Error for the compensated wireline shall be
calculated. This accuracy requirement shall apply for all test loops.

NOTE: The ADSL equipment uses the full ADSL bandwidth up to 1.1 MHz (tone 255) for loop lengths up to about
11 kft for straight 26 AWG loop with –140 dBm/Hz AWGN noise. This corresponds to an expected ADSL signal
bandwidth, reaching to the 1.1 MHz frequency with a loop attenuation of 90 dB. This corresponds with the

627 received signal being 10 dB above the –140 dBm/Hz AWGN level.

628629 b) Average noise floor

630 The average noise floor in the Wireline Simulator shall be lower than -150dBm/Hz within the ADSL band.

632 c) Impedance

The Impedance of the Wireline Simulator shall have less than 10% (5% was under review) variation from the theoretical amplitude and phase. Measured with 100 Ohm termination impedance.

635 636 **d**) **Phase**

The Phase of the Wireline Simulator shall have a total phase with less than 10% variation from the total theoreticalphase.

639A.2Noise Sources

Each noise shall be measured independently at the ATU terminal. This shall be done for one noise source at a time, using a zero-length loop, with both ATUs replaced by a 100 Ohm (\pm 1%) resistor. The measured noise will be impacted by the noise generator tolerance, the coupling circuit tolerance, cabling tolerance and noise pickup (see Annex A.4).

644

For the noise source used in testing, the simulated noise level shall be measured over the frequency band 12 kHz to 2.208 MHz, with at least one measurement per 10 kHz interval. The MAE and Mean Error of the noise level values (in dB), relative to the nominal noise level values (in dB), shall be calculated over the same frequency band [f1, f2] as for the Mean and MAE loop attenuation range.

649

The noise shall be compensated by slightly adjusting the level, such that the MAE is minimized. The Mean Error of the noise with the compensated noise shall be calculated.

652 A.2.1 White Noise

In tests with white noise only, the theoretical noise level shall be defined as a flat PSD level of -140 dBm/Hz over the frequency range of 12 kHz to 2208 kHz, with a Gaussian amplitude distribution to 5 sigma.

655

The MAE of this noise shall be less than 1.0 dB if test setup does not allow to compensate for minimum MAE.
The MAE of this noise shall be less than 0.5 dB if test setup allows to compensate for minimum MAE.

A.2.2 24 HDSL, 24 DSL (ISDN), and 5 T1 Adjacent Binder + European Noises

In tests with disturbers added on top of white noise, the theoretical noise level shall be defined as the reference disturber shapes defined in G.996.1 (June 1999), added to a flat PSD level of -140 dBm/Hz over the frequency

range of 12 kHz to 2208 kHz. Noises shall be Gaussian with a Crest Factor of greater than 5.

662

The measured noise level shall be within a maximum tolerance from the theoretical noise level. The measured

664 noise level tolerance shall be as follows:

005

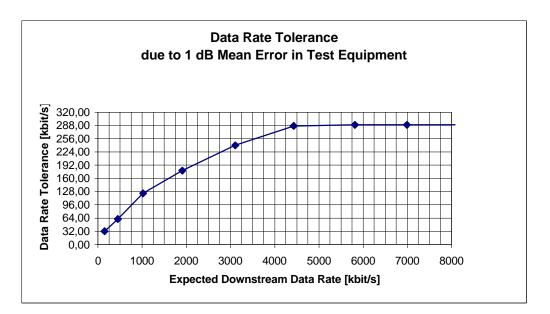
Tolerance of Measured Noise Level Relative to Theoretical Noise Level						
Disturber Type	MAE					
HDSL	< 0.5 dB					
DSL (ISDN)	< 0.5 dB					
T1 Adjacent Binder	< 0.5 dB					
ETSI A	< 0.5 dB					
ETSI B	< 0.5 dB					
Euro-K	< 0.5 dB					

666 A.3 Fine Data Rate Adjustment

667 This paragraph describes a methodology how to finely adjust the measured data rates as a function of the tolerances 668 of the Loop simulator and Noise source.

- 669
- 670 If Loop Attenuation is higher than specified (too much attenuation), the mean attenuation error shall be
- 671 represented by a positive value in dB.
- If the Noise Level is higher than specified (too much noise), the mean noise level error shall be represented by apositive value in dB.
- The mean error of the Test Equipment shall be defined as the sum of the mean attenuation error and the mean noise level error.
- 676 The measured data rate shall be finely adjusted for the mean error of the Test Equipment, using the method below,
- 677 with a proportional rule. The data rate tolerance value (*i.e.*, the fine adjustment) is rounded to the closest
- 678 increment of 32 kbps. The fine adjustment can be a positive or negative value.

- 679 Both the measured data rate and the fine adjustment shall be reported in the test report.
- 680


The fine data rate adjustment is added to the measured data rate and the total is compared with the expected data

rate to determine whether the modem passes or fails the test.

683 A.3.1 Calculation of Data Rate Fine Adjustment

The fine adjustment is calculated from the figure and table below. The mean error is the mean error over the

- 685 [f1,f2] bandwidth.
- 686

687

Expected	Data Rate Fine				
Downstream Data	Adjustment (kbps)				
Rate (kbps)					
148	32.00				
448	61.33				
1020	124.00				
1908	178.67				
3108	240.00				
4428	286.67				
5816	289.33				
6992	289.33				
8000	289.33				

688

- 689 If the measured data rate is the maximum data rate supported by the modem, then no fine adjustment shall be
- 690 performed (*i.e.*, fine adjustment value is set to 0).

692 Example:

- Test case where the expected data rate is 2304 kbps.
- The measured data rate is 2240 kbps.
- The Loop Attenuation mean error is +0.4 dB (too much attenuation).
- The Noise Level mean error is +0.2 dB (too much noise).
- The mean error of the Test equipment is 0.4 + 0.2 = 0.6dB.
- From the table, using linear interpolation, the data rate tolerance is: (2304 1908)/(3108 1908)*(240 178.67) + 178.67 = 198.9 kbps for an attenuation error of 1 dB
- The error due to 0.6 dB is 0.6 * 198.9 = 119.3 kbps
- This value is then rounded, to the closest 32 kbps increment, giving a data rate tolerance value of 128 kbps.
- The total of 2240 + 128 = 2368 kbps is compared with the expected data rate of 2304 kbps.
- It is determined that the modem passes the test.
- 704

The same fine adjustment shall be applied to upstream measured data rates. However, since for upstream all the available tones are used for all loop lengths and measured data rates, the measured upstream data rate fine adjustment due to 1 dB mean error in Test Equipment shall be 32 kbps, irrespective of the measured data rate.

- The methodology described above compensates for tolerance in the spectrum analyzer. The same spectrum
- analyzer shall be used to measure the loop attenuation and the noise level. The impact of the spectrum analyzer
- tolerance on the mean loop attenuation error is compensated by its impact on the mean noise level error.

712 A.4 Cabling

Cabling, switches and other equipment are needed to connect the DSLAM, the loop simulator, the noise generator and the ATU-R. Care must be taken in order that the minimum noise is coupled into this cabling, so the wiring

should be kept short as practically possible. Recommended cables are Cat5 UTP and STP. Since the length is

typically short (*e.g.*, 5 to 10 feet) this does not influence the measurements. STP is only required when there is

high EMI in the vicinity (typically from engines, air conditioning units) or for longer cables coming from the

718 DSLAM. If the test is performed in a large operational lab (where also other work is done) then consider this lab

- 719 as a high-noise environment.
- 720

721 One should take care that the shielding is connected in an appropriate way. Connect the shield to the loop 722 simulator ground only (one sided grounding). A badly connected shield can even make the performance worse. In 723 case of doubt, use the unshielded twisted pair.

724

Computer screens and power supplies radiate in the frequency bands used by ADSL. These devices should be
 placed at a distance from the setup or even be switched off. This noise may be generated by either internal or

- external power supplies. When the pickup noise levels are greater than -140 dBm/Hz, they will limit the ADSL
- 728 performance and influence the test results.
- 729

The ATU-R and ATU-C and their wiring should be physically separated, since when testing on long loops,

crosstalk can occur between the cabling. Generally, starting from attenuation levels of 70 dB and greater, special
 care must be taken for the wiring to avoid crosstalk.

733

To obtain the maximum accuracy the cables, switches and any other equipment used in the link between the

DSLAM and the Remote modem should be contained within the compensation process described in Annex A.1(Loop Simulators).

737 Annex B: ETSI to AWG conversion charts (Informative)

The following table is composed of three main columns listing each various correspondence between ETSI-1 and

26 AWG loops using as pivot parameter (first, fourth, and seventh column) the loop length in km, the loop lengthin kft, and the attenuation in dB, respectively.

- 741
- 1 km = 3.28 kft
- Attenuation/km for ETSI-1 loop @ 20 degrees C = 14.2 dB
- Attenuation/km for 26 AWG loop @ 20 degrees C = 14.6 dB
- 745

Correspondence between attenuation		Correspondence between attenuation			Correspondence between lengths of			
of ETSI-1 and 26 AWG loops for		of 26 AWG and ETSI-1 loops for			ETSI-1 and 26 AWG loops for given			
European lengths		American lengths			loop attenuations			
Loop Type		Loop Туре			Loop Type			
	ETSI-1	26 AWG		26 AWG	ETSI-1		ETSI-1	26 AWG
Loop	Attenuatio	Attenuatio	Loop	Attenuatio	Attenuatio	Loop	Length	Length
length	n (dB)	n (dB)	length	n (dB)	n (dB)	Atten.	(km)	(kft)
(km)			(kft)			(dB)		
0.5	7	7	1	5	4	2	0.1	0.4
1	14	15	2	9	9	4	0.3	0.9
1.4	20	20	3	14	13	6	0.4	1.3
1.5	21	22	4	18	17	8	0.6	1.8
2	28	29	5	23	22	10	0.7	2.2
2.15	30	31	6	27	26	12	0.8	2.7
2.5	36	37	7	32	30	15	1.1	3.4
2.8	40	41	8	36	34	20	1.4	4.5
3	43	44	9	41	39	25	1.8	5.6
3.5	50	51	10	45	43	30	2.1	6.7
4	57	58	11	50	47	35	2.5	7.9
4.2	60	61	12	54	52	40	2.8	9.0
4.5	64	66	13	59	56	45	3.2	10.1
			14	63	60	50	3.5	11.2
			15	68	65	55	3.9	12.4
			16	72	69	60	4.2	13.5
			17	77	73	65	4.6	14.6
			17.5	79	75	70	4.9	15.7
			18	81	77	75	5.3	16.8
						80	5.6	18.0